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Abstract We develop an algorithm extension for a coherent receiver, coupled with machine learning to 

monitor mechanical stress to an optical fiber, for recognizing fiber breaks before they occur. We 

demonstrate event classification with 95% accuracy over a real-time PDM-QPSK testbed.

Introduction 

To comply with the highest reliability standards, 

most optical networks have been designed with a 

protection mechanism which can react to a fiber 

break by rerouting data to a spare fiber path in 

<50ms. To meet this small response time, 

network designers had to almost duplicate all 

hardware. To save on cost and energy, Pesic et 

al.1 proposed to anticipate fiber breaks by a few 

seconds, opening opportunities for dynamic 

protection mechanisms. These mechanisms are 

resilient to one fiber cut at a time over a set of N 

fiber routes (N<1), but share the cost of protecting 

hardware over the N routes. To enable them, 

authors of1 proposed to monitor the State of 

Polarization (SOP) of an out-of-band 

unmodulated laser light travelling through the 

optical fiber with a commercial polarimeter. 

Simsarian et al. recently proposed a low-cost 

implementation with two photodiodes and a 

polarizer2 but limited to a single span. Beside 

these studies, new software tools were 

developed for fault detection and localization 

from receiver monitors3. 
In this paper, we take advantage of digital 

signal processing to build upon the work of 1 and 
make it eligible for cost-effective addition into 
coherent terminals. We developed algorithms 
which can concurrently decode data and track 
SOP, avoiding additional hardware in a real-time 
receiver. We perform proactive detection of fiber 
damage based on two key ingredients (i) flag 
raising when SOP speed exceeds a certain limit 
and (ii) event classification, which are low 
complexity enough to be embedded in an ASIC. 
The latter ingredient reduces probability of false 
alarm and avoids unnecessary rerouting of traffic. 

Fiber Damage Proactive Detection Principle  

Coherent technologies with polarization 

demultiplexing use Digital Signal Processing 

(DSP) to compensate for SOP fluctuations and 

other impairments. To this end, Constant 

Modulus Algorithm (CMA) is the most popular 

method. Here, we exploit the adaptive Finite-

Impulse-Response (FIR) filter of the CMA to 

compute the SOP while decoding received data 

(step #1, fig 1a). We obtain the Jones Matrix of 

each polarization tributary by replacing the four 

FIR filters of the 2x2 CMA equalizer, by their DC 

components (resp. the sum of taps) in the 

frequency domain (resp. in the time domain)4. We 

then derive the SOP in the Stokes coordinates 

{S1;S2;S3}, e.g. for the ‘y’ tributary, as:  
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where Hij is the sum of taps in the time domain 

from ‘i’ input to ‘j’ output tributaries. In step #2, we 

track the SOP rotation speed, defined as: 
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where Δt is the time interval between two 

measurements of SOP and ΔSi the associate 

Stokes parameter differences with i = {1,2,3}. In 

step #3, the SOP rotation speed is compared to 

a threshold which can raise a flag signal to move 

to step #4, i.e. the recording of pre-trigger and 

post-trigger samples of a so-called “event” during 

few seconds, sent at step #5 to the classifier 

which extracts the class of event. Finally, at 

step #6, if the event is classified as “risky”, the 

receiver raises an alarm through signal 

messaging mechanism to the control plane in 

step #7. This latter decides whether to reroute the 

traffic and possibly computes a new route. 

Experimental setup 

Fig. 1(b) shows the experimental setup. A 

polarization division-multiplexed QPSK signal 

carrying pseudo-random data at 7 GBaud is 

amplified into an Erbium Doped Fiber Amplifier 

(EDFA), possibly mixed with additional Amplified 

Spontaneous Emission (ASE) noise. The signal 

propagates over few meters of optical fiber before 

reaching the receiver, equipped with a dual-stage 

EDFA preamplifier followed by a 1.4 nm-broad 

filter at the signal wavelength (193.150 THz) 
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against excess ASE noise. The real-time receiver 

board, presented in detail in 5 consists in an 

integrated coherent receiver followed by four 5-

bits Analog to Digital Converters (ADCs) 

operating at two samples per symbol followed by 

FPGAs. All DSP is performed in one FPGA. CMA 

was implemented as a 5-taps fractionally-spaced 

blind adaptive filter operating on 128 samples in 

parallel. Real and imaginary part of each tap are 

coded on 8 bits and updated at the 109 MHz 

FPGA clock rate – every 64th symbol.  

We emulate about-to-happen fiber damage by 

creating a multiplicity of mechanical stress events 

to the fiber with the claw of a robot arm controlled 

by an ArduinoTM. An important milestone of our 

work was to improve the accuracy of SOP 

measurement by (i) limiting the extraction rate of 

Hij coefficients to one extraction every mth clock 

cycle such that consecutive samples are 

impaired by truly decorrelated contributions of 

noise (we came up with m=64) and then (ii) 

averaging each resulting Hij coefficient over a 

time-window of optimized duration. The larger the 

window, the smaller the variance of 

measurements, but also the lower is the ability to 

track fast varying effects. For this milestone, we 

temporarily replace the real-time-board with a 

‘classical laboratory’ setup - a coherent mixer, 4 

balanced photodiodes and an oscilloscope - and 

offline processing. We load the system with ASE 

noise to meet realistic system conditions, at an 

optical signal to noise ratio of 10.5 dB in 0.1 nm. 

Fig. 2 reports the measured evolution of the 

standard deviation σ of the Stokes parameters as 

a function of window duration, highlighting a 

square root-law relationship, which seems to 

confirm the Gaussian nature of the extracted Hij 

distribution. In the real-time testbed, we set the 

filter length to 256, to achieve a good 

compromise between the SOP accuracy and the 

need to capture a rich-enough signature of the 

events, hence operate at high speed. Then the 

three Stokes parameters are computed and 

rounded to 8-bits sign integers and sent to a 

computer via a serial interface. The computer 

collects new Stokes parameters at a frequency 

fcol. = 1920 Hz. The SOP rotation speed is 

computed with Δt = #samples/fcol. where 

#samples is set at 600 for all acquisitions. We set 

the SOP rotation speed threshold in step #3 to 

0.7 rad/s. Should that limit be exceeded, 256 pre-

triggered and 7872 post-triggered samples are 

collected in a database for classification. Fig. 1(c) 

shows an example of the evolution of the Stokes 

parameters as a function of time during one event 

and its representation on the Poincaré sphere. 

Thanks to the programmable robot arm, we 

emulate four types of events, referred to as 

“classes”, namely “bending”, “shaking”, “small 

hit”, “up and down”. We then train the receiver to 

recognize them and assess the accuracy of the 

prediction when events occur randomly.  

Classification of the data 

In the training phase, we elaborate a function 

𝑓 such as 𝑌 = 𝑓(𝑋) where 𝑌 represents the class, 

 
Fig. 1: (a) Flow-chart of the proactive fiber break detection; (b) Experimental setup with programmable mechanical events driven 
by a robot arm (c) Example of Stokes parameters vs time for a “shaking” event. Green rectangle shows the acquisition window. 
Green dashed line indicates the trigger signal raised in step #3 of (a). Yellow curve on the Poincaré sphere shows the SOP 
variation for this event. 

 
Fig. 2: Standard deviation of the Stokes parameters vs. the 
obtained tracking frequency (inversely proportional to the 
averaging filter length).  



and 𝑋 is a vector of “explanatory variables” i.e. 

mathematical combinations7 of all samples from 

the database and of the time when they were 

recorded. Once f  is trained, any forthcoming 

event should be categorized as one of the 

predefined classes. In the experiments, we 

collect 16548 events divided into training and a 

test phases according to the 10-fold cross 

validation6 process, whatever their class 

(stratified random sampling). To improve the 

efficiency of the learning process, we rotate the 

SOP at fiber input between events with a 

polarization scrambler, such that function f

rapidly captures a common denominator from all 

event of the same class regardless the SOP 

before the event takes place. Fig. 3 shows an 

example of Stokes parameter traces of event 

successfully classified with a probability superior 

to 99.99% for each class. 

The vector 𝑋 is obtained following the 3-steps 

method: (i) 𝑃 “explanatory variables”, are 

elaborated7 (ii) then using a mathematical 

criterion7 𝑄 variables (a subset of the 𝑃 variables) 

are selected for their informativeness, i.e. they 

bring information to predict 𝑌, (iii) finally 𝑅 

explanatory variables (a subset of the 𝑄 

variables) are kept as meaningful using a forward 

backward selection and a maximum a posteriori 

approach for variable selection8. The classifier 

uses a naïve Bayes classifier9 relying on the 𝑅 

variables. 

In Tab. 1 we give typical examples of what the 

classifier tool brought up as “explanatory 

variables” of interest. Tab. 2 gives the values of 

𝑃, 𝑄 and 𝑅 and the performances of the classifier 

using two criteria: the Area Under the receiver 

operating characteristic Curve (AUC)10 and the 

Accuracy (ACC, the rate of good classification). 

The performances of the classifier tool is seen to 

grow with P until it reaches a limit where more 

variables do not bring any additional significant 

improvement. For P=1000 (R=18.2 ± 1.2) the 

classifier exhibits excellent results (AUC=99% 

and the prediction accuracy ACC is as high as 

95%) with excellent robustness (ratio train/test 

results close to 1). This good ratio guarantees 

similar accuracy with random events.  

Another interesting result in Tab. 2 is the small 

number R of variables needed for classification, 

all expected to be computed in real time in a 

commercial transceiver. This number confirm 

that the classifier is implementable with relatively 

low complexity. Moreover, most of variable are 

easy to preprocess online for incremental 

learning11 and fast predictions. 

Conclusions 
We demonstrated SOP monitoring as add-on 
feature to a real-time coherent receiver. We 
elaborated an extension of DSP with limited 
extraction rate, followed by optimized averaging. 
We showed that a naïve Bayes classifier could 
successfully recognize “bending”, “shaking”, 
“small hit”, “up and down” events with >95% 
reliability. In addition, our approach is low 
complexity for an implementation in a coherent 
transceiver.  
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Tab. 2: Number of constructed (P), informative (Q), used 
variables (R) and classification results obtained (mean ± 
standard deviation over the 10 test-folds, *± 0) 

P Q R  After training After test 

10 9* 6.2 ± 0.9 
AUC 0.93 ± 0.01 0.92 ± 0.01 

ACC 0.76 ± 0.02 0.76 ± 0.02 

100 99* 
11.9 ± 

0.8 

AUC 0.98 ± 0.01 0.98 ± 0.01 

ACC 0.91 ± 0.01 0.90 ± 0.01 

1000 999* 
18.2 ± 

1.2 

AUC 0.99 ± 0.01 0.99 ± 0.01 

ACC 0.95 ± 0.01 0.95 ± 0.01 

10000 9999* 24 ± 1.3 
AUC 0.99 ± 0.01 0.99 ± 0.01 

ACC 0.97 ± 0.01 0.96 ± 0.01 

 

 
Fig. 3: Recording of Stokes parameter of sample events 
classified with a probability of 0.99997174 ± 10-9 for P=10000.  

Tab. 1: Examples of explanatory variables of X. 
σS1(t) where 396.6 ms < t < 660.2 ms 

σS2(t) where 396.6 ms < t < 660.2 ms 

σS2(t) where 263.5 ms < t < 395.6 ms 

σS2(t) where t > 1983.1 ms 

σS1(t) where 1718.5 ms < t< 1983.1 ms 

 


